

WBS 1.6.5 Target Station Shielding Seismic Issues

Ken Chipley
Level 3 Task Leader

SNS Project Office Oak Ridge, TN May 9, 2000

SNS High Power Target Station

Instrument Planning

- A full, 24 instrument, experimental hall layout has been developed to provide constraints on target/conventional interfaces and facilitate instrument planning
- Includes instrument under study plus realistic "placeholders"

2000-03453/arh

Target Systems: Target Station Cutaway

SNS Target Systems

Oak Ridge

Target Station Section Views

Thru Proton Beam

Thru Neutron Channels

Knight Model with TS Shielding

SNS Target Systems

Removed the Target Cell

Instrument Floor

Frame Work

Lower Level Concrete

Shielding Systems Major Subsystems

- Bulk Shielding Components Shield blocks located inside the liner (400" diameter) and external to the reflector vessel (140" diameter) and the chopper archways out to 504" diameter.
- External Shell and Liners Steel liner (about 400" diameter and 320" tall) that surrounds the shielding and the rectangular liner that surrounds the target cart.
- Shutter Systems 18 shutters consisting of a large vertically translating shutter gates guided by channels and supported by columns.
- Roof Structure Roof structure and shine shield directly above the target shielding composed of reinforced concrete beams and sealing membrane.

Bulk Shielding Components

Bulk Shield Assembly

Interstitial Block

- Mostly are irregularly shaped steel blocks.
- Intent is to fill the volume with material not otherwise occupied.
- Volume is about 33 ft. diameter and about 27 ft tall.
- Almost 5000 tons of steel shielding.
- Considering using "nonprime" steel slabs as a raw material.

Bulk Shield Components

- Primary purpose is to fill the space around the shutters with steel (or other suitable shielding materials).
- Must support the shutter gates.
- Must resist the lateral loads due to seismic conditions.
- Desirable to keep the shutters relatively independent

Bulk Shield Shutter Support

- Each of the shutter gates would be supported inside the frame
- Major components are:
 - Bottom Block
 - Columns
 - Top Block
- Top Block is removable

Bulk Shield Interstitial Blocks

- These blocks are laminated from plasma cut blocks of "nonprime" steel.
- Either welded or tie bolted.
- These blocks will each have a unique cross section.

Bulk Shield Outboard and Inboard Blocks

- This image shows a volume at the outboard side of the shutter
- This volume will probably not be a single block
- Multiple small blocks around the neutron beam port will allow for this region to be reconfigured.

Forward and Backward Regions

- These areas will be composed of multiple blocks
- The forward region will be designed to support the target cart.
- The backward region will provide the interface to the exterior of the proton beam tube.

Bulk Shield Liner

- Liner provides barrier between slightly activated air inside to the clean air outside on the instrument floor.
- It also provides a barrier for liquids that might leak (water, oils, possibly mercury).
- Material will be carbon steel with on-site assembly of shop fabricated sections.

Bulk Shield Liner

- Major components are:
 - base plate
 - faceted cylindrical section
 - target cart liner
 - flanges for neutron beams
- Some consideration being given to a shorter liner terminating above the neutron beam ports.

Shutter System

- The Shutter sub-system is the most complex within Shielding because it involves large shutter gates which translate vertically in a carefully controlled manner in accurate guides.
- There are two major types of shutter gates:
 - Single Channel Shutters
 - Facing Top Moderators
 - Facing Bottom Moderators
 - Multi-Channel Shutters
 - Facing Top Moderators
 - Facing Bottom Moderators

Shutter Assembly with Other Shielding Components

- •Reduce radiation from target to 10 mrem/h in closed position at 10 meters from moderator.
- •Hold position within 0.125 inches.
- •Be capable of maintenance with 50 ton high bay crane.
- •Shutter gates must accommodate inserts with utility access.

Shutter Gate

- There are six single channel shutter gates and each will weigh about 30 ton.
- The shutter is equipped with a beam stop tungsten plug shown in red.
- The shutter is stepped to reduce radiation streaming
- The shutter has a reduced section on the lower half to allow the insert to be supported independently.

Multi-channel Shutter Assembly

- There are 6 multi-channel shuttters
- These assemblies will weigh between 55 and 80 ton.
- They will be segmented to allow for disassembly
- The center segment will be an instrument systems responsibility to allow for flexible configurations.
- Tungsten beam stop will be located in lowest segment.

Shutter Guides

- The shutters will be guided with accurately positioned guides to make certain that the inserts are in the correct position.
- The inboard guides will be mounted to the vessel support ring.
- The outside guides will be supported and accurately positioned.

Shutter Drive Requirements

- Raise and lower 27 tonne and 72 tonne shutters
- Raise and lower the shutter gates 0.38 or 0.75 meters
- Operate at 0.2 to 0.75 meters/minute
- Provide braking and/or holding of the shutters in the raised position
- Operate independently of other shutters
- Minimize maintenance requirements

Shine Shield System

 The membrane cover that covers the "T" beams and reduces the activated air migration.

Current Status

- Title I design efforts have resulted in assembly models and an integrated connection to other systems. Title I Review completed.
- Detailed Title II drawings should be complete about January 2001.
- Recently the project team has implemented accurately placed inserts in the plug region and shutters to enhance neutron flux at the instruments.
- The chopper enclosures have been reduced from caves with hatches to simple shallow archways.
- We anticipate a few more possible changes:
 - Shorter liner
 - Moving the liner interface radially in to the shutters
 - Integrating the seismic restraints with the vessel to the building structure